skip to main content


Search for: All records

Creators/Authors contains: "Kay, Alan R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Hemolymph is driven through the antennae of Drosophila melanogaster by the rhythmic contraction of muscle 16 (m16), which runs through the brain. Contraction of m16 results in the expansion of an elastic ampulla, opening ostia and filling the ampulla. Relaxation of the ampullary membrane forces hemolymph through vessels into the antennae. We show that m16 is an auto-active rhythmic somatic muscle. The activity of m16 leads to the rapid perfusion of the antenna by hemolymph. In addition, it leads to the rhythmic agitation of the brain, which could be important for clearing the interstitial space. 
    more » « less
  2. Dutzler, Raimund (Ed.)
    Potassium ion (K + ) plays a critical role as an essential electrolyte in all biological systems. Genetically-encoded fluorescent K + biosensors are promising tools to further improve our understanding of K + -dependent processes under normal and pathological conditions. Here, we report the crystal structure of a previously reported genetically-encoded fluorescent K + biosensor, GINKO1, in the K + -bound state. Using structure-guided optimization and directed evolution, we have engineered an improved K + biosensor, designated GINKO2, with higher sensitivity and specificity. We have demonstrated the utility of GINKO2 for in vivo detection and imaging of K + dynamics in multiple model organisms, including bacteria, plants, and mice. 
    more » « less